
IntETec

CBEM LAP

Sylvain Nintcheu Fata

June 2012

This guide is for CBEM LAP (version 1.3, June 2012)

Contents

1 Introduction 1

2 Solution of the Laplace equation via CBEM LAP 1

2.1 Numerical approximation . 2

3 How to use CBEM LAP 3

3.1 Getting started with CBEM LAP . 3

4 Structure of CBEM LAP 6

4.1 Description of cbem lap solv . 7

i

1 Introduction

This guide describes version 1.3 of CBEM LAP, a Collocation Boundary Element Method (CBEM)

for solving the Laplace equation in 3D. CBEM LAP is an Integral Equation Technology (IntETec)

package for solving the Laplace equation in 3D domains via a collocation Boundary Element Method

(BEM). Currently, CBEM LAP can handle 3D polyhedral domains with surface meshes composed

only of flat triangles. In addition, the computational treatment employs piecewise constant ap-

proximations for field variables defined over a surface triangle. The implementation of CBEM LAP

is entirely based on the analytic formulae for surface potentials explicitly provided in [6]. For a gen-

eral overview on the numerical solution of the Laplace equation via the Boundary Integral Equation

(BIE) method, interested readers should consult references [1–3].

The computer routines for this package are available separately in C and Fortran 90. There-

fore, a C compiler or a Fortran 90 compiler is required to obtain an executable. Moreover, BLAS

(http://www.netlib.org/blas) and LAPACK (http://www.netlib.org/lapack) routines, and

the iterative solver BiCGSTAB(l)[9] with a general-purpose sparse preconditioner for BEM [7] are

needed for the solution of the discretized linear system. CBEM LAP contains a driver routine for

the complete solution of a boundary-value problem associated with the 3D Laplace equation.

2 Solution of the Laplace equation via CBEM LAP

To solve the Laplace equation

∇2u = 0 (1)

in a bounded domain Ω ⊂ R
3 with boundary Γ, the BIE method uses the Green’s representation

formula [2, 4, 5] expressed as

∫

Γ

G(x,y) t(y) dΓy −

∫

Γ

H(x,y) · n(y)u(y) dΓy =

{

u(x), x∈Ω

0, x∈R
3\Ω

, (2)

where Ω=Ω ∪ Γ, and the kernels G and H are given respectively by

G(x,y) =
1

4π

1

‖x − y‖
, H(x,y) =

1

4π

x − y

‖x − y‖3
, x,y∈R

3, x 6= y. (3)

In (2), n is the unit normal to Γ directed towards the exterior of Ω and t = ∂u/∂n is the flux

associated with the potential u. One can see from (2) that solving for u in Ω reduces to finding u

and t on Γ. To this end, let xε ∈ R
3 \Ω. The potential u and flux t on Γ can be determined by

solving the singular BIE

lim
xε→x∈Γ

(
∫

Γ

G(xε,y) t(y) dΓy −

∫

Γ

H(xε,y)·n(y)u(y) dΓy

)

= 0. (4)

Note that in (4), xε approaches the boundary Γ from outside the domain Ω. The integral statement

expressed in (4) corresponds to the so-called limit to the boundary approach.

1

2.1 Numerical approximation

To deal with (4), assume that (i) Γ =
⋃

Γq can be triangulated into closed and non-overlapping

surface elements such that Γq is an open flat triangle (see Fig. 1), and (ii) on each element (triangle)

u and t are constants. Let N be the total number of boundary elements on Γ. With these

Figure 1: Triangulation of a standard cube using 588 triangles and 384 nodes.

assumptions, a collocation approach for resolving (4) requires that the singular BIE be satisfied

exactly at a set of collocation points {xi}N
i=1

resting on Γ. This requirement leads to a dense linear

system of algebraic equations for boundary potential u and flux t as

G{t} = H{u}, (5)

where {u} and {t} are respectively vectors containing potentials uj and fluxes tj on each boundary

element Γj (j =1, 2, . . . , N); components of influence matrices G and H can be written as

Gij = lim
xε→xi

gj(xε), Hij = lim
xε→xi

hj(xε), xi∈Γ, (6)

with the single-layer potential gj and double-layer potential hj expressed as

gj(x) =

∫

Γj

G(x,y) dΓy, hj(x) =

∫

Γj

H(x,y)·n(y) dΓy, x∈R
3. (7)

For mathematical consistency, uj and tj (j = 1, 2, . . . , N) are assumed to be potential and flux at

the centroid of the boundary element Γj respectively. Upon prescribing the boundary conditions for

the specific boundary-value problem associated with (1), the linear system (5) can be rearranged as

A{z} = {b}, (8)

where {z}∈R
N is a vector containing unknown potentials or fluxes on Γ, and {b}∈R

N is a vector

whose entries are obtained from known boundary data. For an arbitrary source point x∈R
3, surface

potentials gj(x) and hj(x) are calculated exactly via recursive expressions provided in [6].

The solution of the linear system (8) together with the specified boundary conditions complete

the task of finding u and t on the entire boundary Γ. Finally, the remaining exercise of computing

2

the potential u(x) at an arbitrary interior point x in Ω can be accomplished by use of (2) and (7) as

u(x) =

N
∑

j=1

tj gj(x) −

N
∑

j=1

uj hj(x), x∈Ω. (9)

Note that the numerical analysis presented herein is applicable to the Dirichlet, Neumann and mixed

boundary conditions.

3 How to use CBEM LAP

To use CBEM LAP, simply provide the triangulated surface mesh and boundary conditions in the file

“bndata.dat” and invoke the routine cbem lap srf eval in your code to solve the singular BIE (4) for

the unknown potential u and flux t on the boundary. In addition call the routine cbem lap fld eval

to calculate the potential at user-specified interior points, i.e., to evaluate (9). CBEM LAP package

is provided with a sample problem to illustrate the utilization of the code. The driver routine is in

the file “lap ex.f90” for the Fortran 90 package (or “lap ex.c” for the C package). Also “flux ex.dat”

and “potl ex.dat” are the corresponding output files for the boundary flux and potential respectively.

3.1 Getting started with CBEM LAP

On a Linux system with a Fortran 90 compiler (a C compiler, gcc, is always available), BLAS

and LAPACK installed, the prospective user of CBEM LAP should (i) gunzip and tar the package

cbem lap-f-i-x.tgz (cbem lap-c-i-x.tgz) in a directory of its choice (x is the version number), (ii) edit

the file “makefile”, and (iii) issue “make”. The first step can be accomplished by typing “tar -zxvf

cbem lap-f-i-x.tgz” (“tar -zxvf cbem lap-c-i-x.tgz”) in the shell. In the second step, open “makefile”

with a text editor and replace gfortran by the Fortran 90 compiler on your system (replace gcc by

an ANSI C compiler of your choice). The third step simply generates an executable called lap ex.

Once the executable lap ex has been generated, the user must now provide in the input file

“bndata.dat” (i) the triangulated surface mesh describing the geometry of the domain of interest,

and (ii) the boundary condition for every surface element (triangle). In general, the input file

has three sections. In the first section, the number of boundary nodes followed by the number of

boundary elements are prescribed. The second section contains Cartesian coordinates of all boundary

nodes. In the third section, element connectivity and boundary values (Dirichlet or Neumann) are

prescribed for each boundary element.

The input file is best illustrated via an example. To this end, consider a mixed boundary-value

problem for the Laplace equation in the standard cube Ω = {(x, y, z)∈R
3 : 0 < x, y, z < 1}. The

potential u|Γ = ex sin z + ez cos y is given on the face {x = 0, 0 ≤ y, z ≤ 1}, and the flux t=n ·∇u

is prescribed on the remaining faces, where ∇u=(ex sin z,−ez sin y, ex cos z + ez cos y). Here x, y, z

represent the Cartesian coordinates of a point in the 3D space.

3

Listing 1: Sample input file for a mixed problem on a standard cube

1 24

2 12

3 0.00000000 0.00000000 0.00000000

4 0.00000000 1.00000000 0.00000000

5 0.00000000 0.00000000 1.00000000

6 0.00000000 1.00000000 1.00000000

7 1.00000000 0.00000000 0.00000000

8 1.00000000 1.00000000 0.00000000

9 1.00000000 0.00000000 1.00000000

10 1.00000000 1.00000000 1.00000000

11 0.00000000 0.00000000 0.00000000

12 1.00000000 0.00000000 0.00000000

13 0.00000000 0.00000000 1.00000000

14 1.00000000 0.00000000 1.00000000

15 0.00000000 1.00000000 0.00000000

16 1.00000000 1.00000000 0.00000000

17 0.00000000 1.00000000 1.00000000

18 1.00000000 1.00000000 1.00000000

19 0.00000000 0.00000000 0.00000000

20 1.00000000 0.00000000 0.00000000

21 0.00000000 1.00000000 0.00000000

22 1.00000000 1.00000000 0.00000000

23 0.00000000 0.00000000 1.00000000

24 1.00000000 0.00000000 1.00000000

25 0.00000000 1.00000000 1.00000000

26 1.00000000 1.00000000 1.00000000

27 1 4 2 1.42398872 0

28 1 3 4 2.45889461 0

29 8 5 6 0.88940740 1

30 7 5 8 1.68090340 1

31 12 9 10 0.00000000 1

32 11 9 12 0.00000000 1

33 13 16 14 -1.17436736 1

34 13 15 16 -1.63896168 1

35 17 20 18 -2.89269099 1

36 17 19 20 -2.18149969 1

37 24 21 22 3.62102449 1

38 23 21 24 2.89031567 1

4

For the foregoing problem, the contents of the input file “bndata.dat” can be seen in Listing 1.

The line numbers in the first column of the listing do not, in reality, exist in the file. It is included

here to facilitate the presentation. On the first line, 24 represents the number of boundary nodes.

On the second line, 12 specifies the number of boundary elements. Next, the x, y, z coordinates of

all boundary nodes are given on line 3 through line 26. Namely, the x, y, z coordinates of the 1-st

boundary node is given on line 3, the Cartesian coordinates of the 2-nd boundary node on line 4

and so on. In this manner, a global index is assigned to each boundary node in a sequential order

at which they are entered in the input file. Next, the characteristics of each boundary element is

specified from line 27 through line 38 via the format i j k xxx m. The triplet i → j → k

represents the so-called element connectivity, where i, j and k are respectively the global indices

of three boundary nodes that form together a flat triangle in R
3. In other words, boundary node i

is connected to node j which, in turn, is connected to node k defining in this order the orientation

of the boundary element. This orientation may be specified in either clockwise or anti-clockwise

when viewed in the direction of the outward normal. The real number xxx represents the prescribed

boundary condition on element i → j → k (i.e. at the centroid of the flat triangle i → j → k).

If m = 0, then the potential is given on the element. If m = 1 instead, then the flux is specified on

element i → j → k.

It is also important to note that a global index is assigned to each boundary element in the order

at which they are listed in the input file. Namely, the characteristics of the 1-st boundary element

is given on line 27, the attributes of the 2-nd element on line 28 and so on.

Since in C, array elements are indexed beginning with 0, the listing from line 27 through line 38

for the C package cbem lap-c-i-x.tgz will look like this:

27 0 3 1 1.42398872 0

28 0 2 3 2.45889461 0

29 7 4 5 0.88940740 1

30 6 4 7 1.68090340 1

31 11 8 9 0.00000000 1

32 10 8 11 0.00000000 1

33 12 15 13 -1.17436736 1

34 12 14 15 -1.63896168 1

35 16 19 17 -2.89269099 1

36 16 18 19 -2.18149969 1

37 23 20 21 3.62102449 1

38 22 20 23 2.89031567 1

Note that the node numbers i, j and k, indeed, range from 0 through 23.

In CBEM LAP, the input data are read into the code via the routine cbem lap input in the file

“cbem lap input.f90” (“cbem lap input.c”). For the sample problem provided in this package, the

file “bndata.dat” contains 384 boundary nodes and 588 elements on a standard cube.

5

4 Structure of CBEM LAP

CBEM LAP is provided with a driver routine to solve a complete Laplace problem, computa-

tional routines to perform basic BEM tasks, and auxiliary routines to accomplish specific subtasks.

Common to all BEM program, the computational subroutines of CBEM LAP are listed below along

cbem_lap_input

cbem_lap_assem

cbem_lap_lrhs

cbem_lap_solv

cbem_lap_init

main program

cbem_lap_srf_eval

cbem_lap_fld_eval

Figure 2: Structure of a BEM program.

with a brief description of the purpose of each routine:

Routine Description

cbem lap srf eval Solve the Singular BIE for the Laplace equation

cbem lap input Read input data and parameters

cbem lap init Initialize arrays and parameters

cbem lap assem Assemble H and G influence matrices

cbem lap lrhs Form the left- and right-hand sides of the discretized BIE

cbem lap solv Solve the Discretized BIE

cbem lap fld eval Evaluate potential at interior points

The acronym CBEM stands for Collocation Boundary Element Method. Fig. 2 illustrates the struc-

ture of the driver routine (see “lap ex.f90” or “lap ex.c”) provided in this package. As can be seen

from the figure, the main program (i.e. the driver routine) simply invokes cbem lap srf eval to

compute the potential and flux at the centroid of each boundary element, and cbem lap fld eval

to calculate the potential at a set of prescribed interior points. The source code for an individ-

6

ual routine listed in Fig. 2 can be found in a file with corresponding name. For instance, the

routine cbem lap srf eval can be found in “cbem lap srf eval.f90” for the Fortran 90 package (or

“cbem lap srf eval.c” for the C package). In addition, the file “cbem util.f90” (“cbem util.c”) con-

tains useful routines needed for a successful implementation of a collocation boundary element code.

For a detailed description of a specific CBEM LAP routine, interested users (especially software

developers) should consult the source code.

Since cbem lap solv employs the iterative solver BiCGSTAB(l)[9] and a general-purpose sparse

preconditioner for BEM [7] to solve the discretized linear system (8), it is important to further

describe this routine.

4.1 Description of cbem lap solv

To maintain an O(N2) algorithm, the Bi-Conjugate Gradient Stabilized (BiCGSTAB(l)) method [9]

will be utilized to solve the discretized BIE (8) iteratively. In addition, since linear systems arising

from BEM approximations are often ill-conditioned especially when dealing with mixed boundary-

value problems defined on Lipschitz domains, a preconditioner is necessary to effectively accomplish

the foregoing task. As elucidated in [7], a left preconditioner for the fully-populated linear system

(8) is a non-singular matrix P such that P−1A is better conditioned than the original matrix A. In

practice, P is often constructed as a sparse matrix so that the cost of generating and storing P−1,

and solving the system P{x} = {y} scales linearly with the number of boundary unknowns N .

To extract such a sparse preconditioner P from A, an auxiliary axis-parallel box containing

the discretized boundary Γ of the domain Ω is subdivided into parallelepipeds called cells. Next,

boundary elements on Γ are distributed without repetition into cells. Further, every non-empty cell

(i.e. cell containing boundary elements) is assigned a set of non-empty near-neighboring cells. With

these preliminaries, the sparsity pattern of P is defined by a user-specified parameter Lc =1 + nc,

where nc is the number of near-neighboring cells (if any) used in the actual construction of P.

Namely, if Lc =1, the entries of P are gathered from those aij of A obtained only from the cell self-

interactions. All other interactions between boundary elements are simply ignored. This situation

will generate a sparse approximation P to the matrix A that contains the dominant part of A

and has the smallest number of non-zero entries. For any other value Lc, the preconditioner P

is constructed from the cell self-interactions plus the interaction of each non-empty cell and its

nc nearest neighbors. Once P has been generated, an incomplete LU factorization with no fill-ins

(ILU(0)) [8] is further employed to indirectly compute an approximate inverse P−1.

In cbem lap solv, if the sparsity flag Lc ≤ 0, the iterative solver BiCGSTAB(l) given by the

routine bicgstabl (see “bicgstabl.f90” or “bicgstabl.c”) runs without preconditioner. If however

Lc ≥ 1, the sparsity pattern of P is determined by calling (i) the routine cbem cell init to build

and initialize the axis-parallel cells, and (ii) the routine cbem cell neighbor to generate the list

of near-neighbors for all non-empty cells. Next, the preconditioner P is formed and an ILU(0) is

accomplished by invoking the routine csr ilu0. After these steps, the iterative solver bicgstabl is

called to solve the discretized BIE (8) using the constructed preconditioner.

7

References

[1] P. K. Banerjee. The Boundary Element Methods in Engineering. McGraw-Hill, London, 1994.

[2] M. Bonnet. Boundary Integral Equation Methods for Solids and Fluids. Wiley & Sons, New

York, 1995.

[3] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques. Springer Verlag,

Berlin, 1984.

[4] R. Kress. Linear Integral Equations. Springer-Verlag, New York, 1999.

[5] S. Nintcheu Fata. Fast Galerkin BEM for 3D-potential theory. Comput. Mech., 42(3):417–429,

2008.

[6] S. Nintcheu Fata. Explicit expressions for 3D boundary integrals in potential theory. Int. J.

Numer. Meth. Eng., 78(1):32–47, 2009.

[7] S. Nintcheu Fata and L. J. Gray. On the implementation of 3D Galerkin boundary integral

equations. Eng. Anal. Boundary Elem., 34(1):60–65, 2010.

[8] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

[9] G. L. G. Sleijpen and D. R. Fokkema. BiCGSTAB(l) for linear equations involving unsymmetric

matrices with complex spectrum. ETNA, 1:11–32, 1993.

8

