
IntETec

GBEM LAP

Sylvain Nintcheu Fata

June 2012

This guide is for GBEM LAP (version 1.1, June 2012)

Contents

1 Introduction 1

2 Solution of the Laplace equation via GBEM LAP 1

2.1 Numerical approximation . 2

3 How to use GBEM LAP 3

3.1 Getting started with GBEM LAP . 4

4 Structure of GBEM LAP 7

i

1 Introduction

This guide describes version 1.1 of GBEM LAP, a Galerkin Boundary Element Method for solving

the Laplace equation in 3D. GBEM LAP is an Integral Equation Technology (IntETec) package for

solving the Laplace equation in 3D domains via a Galerkin Boundary Element Method (GBEM).

Currently, GBEM LAP can handle 3D polyhedral domains with surface meshes composed only of

flat triangles. In addition, the computational treatment employs piecewise linear approximations

for field variables defined over a surface triangle. The implementation of GBEM LAP is based on the

semi-analytic integration technique for Galerkin surface integrals elucidated in [8–10]. For a general

overview on the numerical solution of the Laplace equation via a Boundary Integral Equation (BIE)

method, interested readers should consult references [1–3].

The computer routines for this package are available separately in C and Fortran 90. Therefore,

a C compiler or a Fortran 90 compiler is required to obtain an executable. Moreover,

BLAS (http://www.netlib.org/blas) and LAPACK (http://www.netlib.org/lapack) routines

are needed for the solution of the discretized linear system. GBEM LAP contains a driver routine

for the complete solution of a boundary-value problem associated with the 3D Laplace equation.

2 Solution of the Laplace equation via GBEM LAP

To solve the Laplace equation

∇2u = 0 (1)

in a bounded domain Ω ⊂ R
3 with boundary Γ, the BIE method uses the Green’s representation

formula [4–6] expressed as

∫

Γ

G(x,y) t(y) dΓy −

∫

Γ

H(x,y) · n(y)u(y) dΓy =

{

u(x), x∈Ω

0, x∈R
3\Ω

, (2)

where Ω=Ω ∪ Γ, and the kernels G and H are given respectively by

G(x,y) =
1

4π

1

‖x − y‖
, H(x,y) =

1

4π

x − y

‖x − y‖3
, x,y∈R

3, x 6= y. (3)

In (2), n is the unit normal to Γ directed towards the exterior of Ω and t = ∂u/∂n is the flux

associated with the potential u. One can see from (2) that solving for u in Ω reduces to finding u

and t on Γ. To this end, let xε ∈ R
3 \Ω. The potential u and flux t on Γ can be determined by

solving the singular BIE

lim
xε→x∈Γ

(
∫

Γ

G(xε,y) t(y) dΓy −

∫

Γ

H(xε,y)·n(y)u(y) dΓy

)

= 0. (4)

Note that in (4), xε approaches the boundary Γ from outside the domain Ω. The integral statement

expressed in (4) corresponds to the so-called limit to the boundary approach.

1

2.1 Numerical approximation

To deal with (4), assume that Γ =
⋃

Γq can be triangulated into closed and non-overlapping surface

elements such that Γq is an open flat triangle (see Fig. 1). Let N be the total number of boundary

nodes on Γ, and denote by Ne the total number of triangles (boundary elements) on Γ. Moreover,

Figure 1: Triangulation of a standard cube using 588 triangles and 384 nodes.

consider the decomposition of the boundary fields u and t in terms of their respective nodal values

and basis shape functions ψj at discrete points yj on Γ as

u(y) =

N
∑

j=1

uj ψj(y), t(y) =

N
∑

j=1

tj ψj(y), yj ,y∈Γ, (5)

where uj = u(yj) and tj = t(yj). With these assumptions, a Galerkin approach for solving (4)

requires that
∫

Γ

ψi(x)

{

lim
xε→x∈Γ

(
∫

Γ

G(xε,y) t(y) dΓy −

∫

Γ

H(xε,y)·n(y)u(y) dΓy

)}

dΓx = 0, (6)

for all test functions ψi (i = 1, 2, . . . , N). By use of the representations (5) in (6), and by virtue

of the triangulation of Γ into non-overlapping boundary elements Γq, one can write a dense linear

system of algebraic equations for boundary potential u and flux t as

G{t} = H{u}, (7)

where {u}∈R
N and {t}∈R

N are vectors containing respectively the quantities uj and tj at every

boundary node j (j =1, 2, . . . , N) on Γ. The components of influence matrices G and H appearing

in (7) are expressed as

Gij =

Nei
∑

p=1

Nej
∑

q=1

Gpq
ij , Gpq

ij =

∫

Γp

ψi(x)

(

lim
xε→x

∫

Γq

G(xε,y)ψj(y) dΓy

)

dΓx, (8)

and

Hij =

Nei
∑

p=1

Nej
∑

q=1

Hpq
ij , Hpq

ij =

∫

Γp

ψi(x)

(

lim
xε→x

∫

Γq

H(xε,y)·n(y)ψj(y) dΓy

)

dΓx, (9)

2

where Γp ∈ supp(ψi), Γq ∈ supp(ψj) and Nei is the number of boundary elements in supp(ψi). Here,

supp(ψi) denotes the support of the function ψi. Upon prescribing the boundary conditions for the

specific boundary-value problem associated with the Laplace equation (1), the linear system (7) can

be rearranged as

A{z} = {b}, (10)

where {z} ∈ R
N is a vector containing unknown potentials or fluxes on Γ, and {b} ∈ R

N is a

vector whose entries are obtained from known boundary data. The local contributions Gpq
ij and

Hpq
ij expressed in (8) and (9), and implicitly featured in (10), are evaluated using the semi-analytic

integration technique for Galerkin surface integrals which utilizes piecewise linear shape and test

functions over flat triangular boundary elements [8–10].

The solution of the linear system (10) together with the specified boundary conditions complete

the task of finding u and t on the entire boundary Γ. Finally, the remaining exercise of computing

the potential u(x) at an arbitrary interior point x in Ω can be accomplished by use of (2) and (5),

and the discretization of Γ into non-overlapping boundary elements Γq as

u(x) =

N
∑

j=1

tj Gj(x) −

N
∑

j=1

uj Hj(x), x∈Ω (11)

where Gj and Hj are expressed respectively as

Gj(x) =

Nej
∑

q=1

Gq
j(x), Gq

j(x) =

∫

Γq

G(x,y)ψj(y) dΓy, x∈R
3, (12)

and

Hj(x) =

Nej
∑

q=1

Hq
j (x), Hq

j (x) =

∫

Γq

H(x,y)·n(y)ψj(y) dΓy, x∈R
3. (13)

For an arbitrary source point x∈R
3 and linear shape function ψj defined over a flat triangle Γq, the

single-layer potential Gq
j(x) and double-layer potential Hq

j (x) are calculated exactly via recursive

expressions provided in [7]. Note that the numerical analysis presented herein is applicable to the

Dirichlet, Neumann and mixed boundary conditions.

3 How to use GBEM LAP

To use GBEM LAP, simply provide the triangulated surface mesh and boundary conditions in the

file “bndata.dat”, and invoke the routine gbem lap srf eval in your code to solve the singular

BIE (6) for the unknown potential u and flux t on the boundary. In addition, call the routine

gbem lap fld eval to calculate the potential at user-specified interior points, i.e., to evaluate (11).

GBEM LAP package is provided with a sample problem to illustrate the utilization of the code. The

driver routine is in the file “lap ex.f90” for the Fortran 90 package (or “lap ex.c” for the C package).

Also “flux ex.dat” and “potl ex.dat” are the corresponding output files for the boundary flux and

potential respectively.

3

3.1 Getting started with GBEM LAP

On a Linux system with a Fortran 90 compiler (a C compiler, gcc, is always available), BLAS

and LAPACK installed, the prospective user of GBEM LAP should (i) gunzip and tar the package

gbem lap-f-d-x.tgz (gbem lap-c-d-x.tgz) in a directory of its choice (x is the version number), (ii) edit

the file “makefile”, and (iii) issue “make”. The first step can be accomplished by typing “tar -zxvf

gbem lap-f-d-x.tgz” (“tar -zxvf gbem lap-c-d-x.tgz”) in the shell. In the second step, open “makefile”

with a text editor and replace gfortran by the Fortran 90 compiler on your system (replace gcc by

an ANSI C compiler of your choice). The third step simply generates an executable called lap ex.

Once the executable lap ex has been generated, the user must now provide in the input file

“bndata.dat” (i) the triangulated surface mesh describing the geometry of the domain of interest,

and (ii) the boundary condition for every surface node on the mesh. In general, the input file has three

sections. In the first section, the number of boundary nodes followed by the number of boundary

elements are prescribed. The second section contains Cartesian coordinates of all boundary nodes,

and boundary values (Dirichlet or Neumann) at every boundary node. In the third section, element

connectivity is specified for each boundary element.

T
ri

pl
e

no
de

 f
or

 c
or

ne
rs

Double node for edges

Single node for interior points of smooth patches

Figure 2: Multiple nodes on the triangulated surface of a cube.

A particular feature of a Galerkin BEM is its ability to naturally handle discontinuities in the flux

(t = ∂u/∂n) at corners and edges of domains with non-smooth surfaces. In the GBEM LAP package,

this difficulty is dealt with by representing corners and edges as multiple nodes. A multiple node

is a point of intersection of smooth surface patches representing the boundary mesh. Namely, a

multiple node or n-node can be viewed as a set of n boundary nodes which represent the same

geometric position (i.e. have the same Cartesian coordinates) but are located at the intersection of

n smooth patches forming the surface mesh. In Fig. 2, a boundary node on an edge of a cube is a

double node. In addition, a boundary node at a vertex or corner of a cube is a triple node. Finally,

a boundary node at the interior of a face (smooth patch) of a cube is a regular or smooth node.

4

Listing 1: Sample input file for a mixed problem on a standard cube

1 24

2 12

3 0.00000000 0.00000000 0.00000000 1.00000000 0

4 0.00000000 1.00000000 0.00000000 0.54030231 0

5 0.00000000 0.00000000 1.00000000 3.55975281 0

6 0.00000000 1.00000000 1.00000000 2.31016492 0

7 1.00000000 0.00000000 0.00000000 0.00000000 1

8 1.00000000 1.00000000 0.00000000 0.00000000 1

9 1.00000000 0.00000000 1.00000000 2.28735529 1

10 1.00000000 1.00000000 1.00000000 2.28735529 1

11 0.00000000 0.00000000 0.00000000 0.00000000 1

12 1.00000000 0.00000000 0.00000000 0.00000000 1

13 0.00000000 0.00000000 1.00000000 0.00000000 1

14 1.00000000 0.00000000 1.00000000 0.00000000 1

15 0.00000000 1.00000000 0.00000000 -0.84147098 1

16 1.00000000 1.00000000 0.00000000 -0.84147098 1

17 0.00000000 1.00000000 1.00000000 -2.28735529 1

18 1.00000000 1.00000000 1.00000000 -2.28735529 1

19 0.00000000 0.00000000 0.00000000 -2.00000000 1

20 1.00000000 0.00000000 0.00000000 -3.71828183 1

21 0.00000000 1.00000000 0.00000000 -1.54030231 1

22 1.00000000 1.00000000 0.00000000 -3.25858413 1

23 0.00000000 0.00000000 1.00000000 3.25858413 1

24 1.00000000 0.00000000 1.00000000 4.18697577 1

25 0.00000000 1.00000000 1.00000000 2.00899625 1

26 1.00000000 1.00000000 1.00000000 2.93738788 1

27 1 4 2

28 1 3 4

29 8 5 6

30 7 5 8

31 12 9 10

32 11 9 12

33 13 16 14

34 13 15 16

35 17 20 18

36 17 19 20

37 24 21 22

38 23 21 24

5

The input file is best illustrated via an example. To this end, consider a mixed boundary-value

problem for the Laplace equation in the standard cube Ω = {(x, y, z)∈R
3 : 0 < x, y, z < 1}. The

potential u|Γ = ex sin z + ez cos y is given on the face {x = 0, 0 ≤ y, z ≤ 1}, and the flux t=n ·∇u

is prescribed on the remaining faces, where ∇u=(ex sin z,−ez sin y, ex cos z + ez cos y). Here x, y, z

represent the Cartesian coordinates of a point in the 3D space.

For the foregoing problem, the contents of the input file “bndata.dat” can be seen in Listing 1.

The line numbers in the first column of the listing do not, in reality, exist in the file. It is included

here to facilitate the presentation. On the first line, 24 represents the number of boundary nodes.

On the second line, 12 specifies the number of boundary elements. Next, the characteristics of each

boundary node is given on line 3 through line 26 using the format x y z xxx m. Namely, the

x, y, z coordinates of the 1-st boundary node is given on line 3, the Cartesian coordinates of the 2-nd

boundary node on line 4 and so on. In this manner, a global index is assigned to each boundary node

in a sequential order at which they are entered in the input file. The real number xxx represents the

prescribed boundary condition at boundary node with Cartesian coordinates x y z. If m = 0, then

the potential is given at the boundary node. If m = 1 instead, then the flux is specified at boundary

node with coordinates x y z. Next, the characteristics of each boundary element is specified from

line 27 through line 38 via the format i j k. The triplet i → j → k represents the so-called

element connectivity, where i, j and k are respectively the global indices of three boundary nodes

that form together a flat triangle in R
3. In other words, boundary node i is connected to node j

which, in turn, is connected to node k defining in this order the orientation of the boundary element.

This orientation may be specified in either clockwise or anti-clockwise when viewed in the direction

of the outward normal.

It is also important to note that a global index is assigned to each boundary element in the order

at which they are listed in the input file. Namely, the characteristics of the 1-st boundary element

is given on line 27, the attributes of the 2-nd element on line 28 and so on.

Since in C, array elements are indexed beginning with 0, the listing from line 27 through line 38

for the C package gbem lap-c-d-x.tgz will look like this:

27 0 3 1

28 0 2 3

29 7 4 5

30 6 4 7

31 11 8 9

32 10 8 11

33 12 15 13

34 12 14 15

35 16 19 17

36 16 18 19

37 23 20 21

38 22 20 23

6

Note that the node numbers i, j and k, indeed, range from 0 through 23.

In GBEM LAP, the input data are read into the code via the routine gbem lap input in the file

“gbem lap input.f90” (“gbem lap input.c”). For the sample problem provided in this package, the

file “bndata.dat” contains 384 boundary nodes and 588 elements on the surface of a standard cube.

4 Structure of GBEM LAP

GBEM LAP is provided with a driver routine to solve a complete Laplace problem, computa-

tional routines to perform basic BEM tasks, and auxiliary routines to accomplish specific subtasks.

Common to all BEM program, the principal computational subroutines of GBEM LAP are listed

gbem_lap_assem

gbem_lap_lrhs

gbem_lap_solv

main program

gbem_lap_fld_eval

gbem_lap_srf_eval

gbem_lap_input

gbem_lap_init

Figure 3: Structure of a BEM program.

below along with a brief description of the purpose of each routine:

Routine Description

gbem lap srf eval Solve the Singular BIE for the Laplace equation

gbem lap input Read input data and parameters

gbem lap init Initialize arrays and parameters

gbem lap assem Assemble H and G influence matrices

gbem lap lrhs Form the left- and right-hand sides of the discretized BIE

gbem lap solv Solve the discretized BIE

gbem lap fld eval Evaluate potential at interior points

7

The acronym GBEM stands for Galerkin Boundary Element Method. Fig. 3 illustrates the structure

of the driver routine (see “lap ex.f90” or “lap ex.c”) provided in this package. As can be seen from the

figure, the main program (i.e. the driver routine) simply invokes gbem lap srf eval to compute the

potential u and flux t at every boundary node, and gbem lap fld eval to calculate the potential u

at a set of prescribed interior points. In gbem lap lrhs, the continuity of the potential is enforced at

every multiple node, if any, on the boundary mesh. Moreover, gbem lap solv merely calls LAPACK

routines dgetrf and dgetrs to directly solve the discretized BIE (10), and retrieves the potential

by continuity at multiple nodes if any. The source code for an individual routine listed in Fig. 3

can be found in a file with corresponding name. For instance, the routine gbem lap srf eval can

be found in “gbem lap srf eval.f90” for the Fortran 90 package (or “gbem lap srf eval.c” for the C

package). In addition, the file “gbem util.f90” (“gbem util.c”) contains useful routines needed for

a successful implementation of a Galerkin boundary element code. For a detailed description of

a specific GBEM LAP routine, interested users (especially software developers) should consult the

source code.

References

[1] P. K. Banerjee. The Boundary Element Methods in Engineering. McGraw-Hill, London, 1994.

[2] M. Bonnet. Boundary Integral Equation Methods for Solids and Fluids. Wiley & Sons, New

York, 1995.

[3] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques. Springer

Verlag, Berlin, 1984.

[4] David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order.

Springer, New York, 2001.

[5] George C. Hsiao and Wolfgang L. Wendland. Boundary Integral Equations. Applied Mathe-

matical Sciences, Volume 164. Springer, New York, 2008.

[6] S. Nintcheu Fata. Fast Galerkin BEM for 3D-potential theory. Comput. Mech., 42(3):417–429,

2008.

[7] S. Nintcheu Fata. Explicit expressions for 3D boundary integrals in potential theory. Int. J.

Numer. Meth. Eng., 78(1):32–47, 2009.

[8] S. Nintcheu Fata. Semi-analytic treatment of nearly-singular Galerkin surface integrals. Appl.

Numer. Math., 60(10):974–993, 2010.

[9] S. Nintcheu Fata and L. J. Gray. Semi-analytic integration of hypersingular Galerkin BIEs for

three-dimensional potential problems. J. Comput. Appl. Math., 231(2):561–576, 2009.

8

[10] S. Nintcheu Fata and L. J. Gray. On the implementation of 3D Galerkin boundary integral

equations. Eng. Anal. Boundary Elem., 34(1):60–65, 2010.

9

