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1 Introduction

This guide describes version 1.1 of CBEM POI, a Collocation Boundary Element Method (CBEM) for

solving the Poisson equation in 3D. CBEM POI is an Integral Equation Technology (IntETec) package for

solving the Poisson equation in 3D domains via a collocation Boundary Element Method (BEM). Currently,

CBEM POI can handle 3D polyhedral domains with surface meshes composed only of flat triangles. In

addition, the computational treatment employs piecewise constant approximations for field variables defined

over a surface triangle. The implementation of CBEM POI is based on the analytic formulae for surface

potentials explicitly provided in [6], and on the treatment of the Newton potential elucidated in [7]. For a

general overview on the discretization of the Poisson equation using the Boundary Integral Equation (BIE)

method, interested readers should consult references [1–3].

The computer routines for this package are available separately in C and Fortran 90. Therefore, a

C compiler or a Fortran 90 compiler is required to obtain an executable. Moreover, LAPACK routines

(http://www.netlib.org/lapack) and BLAS routines (http://www.netlib.org/blas), and the iterative

solver BiCGSTAB(l)[10] with a general-purpose sparse preconditioner for BEM [8] are needed for the solution

of the discretized linear system. CBEM POI contains a driver routine for the complete solution of a boundary-

value problem associated with the 3D Poisson equation.

2 Solution of the Poisson equation via CBEM POI

To solve the Poisson equation

∇2u + b = 0 (1)

in a bounded domain Ω ⊂ R
3 with boundary Γ, the BIE method employs the Green’s representation for-

mula [2, 4, 5] expressed as

∫

Γ

G(x,y) t(y) dΓy −

∫

Γ

H(x,y) · n(y)u(y) dΓy +

∫

Ω

G(x,y) b(y) dΩy =

{

u(x), x∈Ω,

0, x∈R
3\Ω,

(2)

where Ω=Ω ∪ Γ, and the non-trivial term b represents a continuous source function prescribed on Ω. The

kernels G and H are given respectively by

G(x,y) =
1

4π

1

‖x − y‖
, H(x,y) =

1

4π

x − y

‖x − y‖3
, x,y∈R

3, x 6= y. (3)

Since the Poisson equation (1) naturally occurs, for example, in the problem of finding the electrostatic

potential of an electric field in a region of continuously distributed charges, the solution u of (1) will simply

be called potential. In (2), n is the unit normal to Γ directed towards the exterior of Ω and t = ∂u/∂n is

the flux associated with the field variable u. One can see from (2) that solving for u in Ω reduces to finding

u and t on Γ. To this end, let xε∈R
3\Ω. The potential u and flux t on Γ can be determined by solving the

singular BIE

lim
xε→x∈Γ

(
∫

Γ

G(xε,y) t(y) dΓy −

∫

Γ

H(xε,y)·n(y)u(y) dΓy +

∫

Ω

G(xε,y) b(y) dΩy

)

= 0. (4)
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Figure 1: Triangulation of a standard cube using 588 triangles and 384 nodes.

Note that in (4), xε approaches the boundary Γ from outside the domain Ω. The integral statement expressed

in (4) corresponds to the so-called limit to the boundary approach.

For a successful treatment of the singular BIE (4) with boundary-only discretization, it is useful to

introduce the Newton potential as

V(x) =

∫

Ω

G(x,y) b(y) dΩy, x∈R
3. (5)

Now, one can invoke the following result established in [7] stating that the Newton potential (5) admits the

representation

V(x) =
1

4π

∫

Γ

(y − x) · n(y)

‖y − x‖
F(x,y) dΓy, x∈R

3, (6)

where

F(x,y) =

∫ 1

0

z h(x + z (y − x)) dz, y∈Ω (7)

with h denoting an extension of the source function b into any ball centered at x and containing Ω. In

particular, a continuation h of the source function b can be specified as

h(x) =







b(x), x∈Ω,

0, x∈R
3\Ω.

2.1 Numerical approximation

To deal with (4), assume that (i) Γ =
⋃

Γq can be triangulated into closed and non-overlapping surface

elements such that Γq is an open flat triangle (see Fig. 1), and (ii) on each element (triangle) u and t are

constants. Let N be the total number of boundary elements on Γ. With these assumptions, a collocation

approach for resolving (4) requires that the singular BIE be satisfied exactly at a set of collocation points

{xi}N
i=1 resting on Γ. This requirement leads to a dense linear system of algebraic equations for boundary

unknowns u and t as

G{t} − H{u} = −{B}, (8)
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where {u} and {t} are respectively vectors containing potentials uj and fluxes tj on each boundary element

Γj (j =1, 2, . . . , N); components of influence matrices G and H can be written as

Gij = lim
xε→xi

gj(xε), Hij = lim
xε→xi

hj(xε), xi∈Γ, (9)

with the single-layer potential gj and double-layer potential hj expressed as

gj(x) =

∫

Γj

G(x,y) dΓy, hj(x) =

∫

Γj

H(x,y)·n(y) dΓy, x∈R
3. (10)

With the aid of the Newton potential (5), the vector {B} characterizes the contributions of the source

function b with component given by

Bi = lim
xε→xi

V(xε), xi∈Γ. (11)

For mathematical consistency, uj and tj (j = 1, 2, . . . , N) are assumed to be quantities evaluated at the

centroid of the boundary element Γj respectively. Upon prescribing the boundary conditions for the specific

boundary-value problem associated with (1), the linear system (8) can be rearranged as

A{z} = {f}, (12)

where {z}∈R
N is a vector containing unknown potentials or fluxes on Γ, and {f}∈R

N is a vector whose

entries are obtained from the contributions of the source term {B} and the prescribed boundary data. For

an arbitrary source point x ∈ R
3, surface potentials gj(x) and hj(x) are calculated exactly via recursive

expressions provided in [6]. In addition, it was demonstrated in [7] that V can be approximated as

V(x) =
1

4π

N
∑

j=1

Aj(x)F(x,yj), x∈R
3, (13)

where yj denotes the centroid of the flat triangle Γj and

Aj(x) =

∫

Γj

(y − x) · n(y)

‖y − x‖
dΓy, x∈R

3.

It was also shown in [7] that the coefficient Aj(x) can be computed exactly using the recursive expressions

given in [6]. Lastly, the straight-line integral (7) can be effectively carried out using well-known quadrature

formulae.

The solution of the linear system (12) together with the specified boundary conditions complete the

task of finding u and t on the entire boundary Γ. Finally, the remaining exercise of computing u(x) at an

arbitrary interior point x in Ω can be accomplished by use of (2), (5) and (10) as

u(x) =
N

∑

j=1

tj gj(x) −
N

∑

j=1

uj hj(x) + V(x), x∈Ω. (14)

Note that the numerical analysis presented herein is applicable to the Dirichlet, Neumann and mixed bound-

ary conditions.
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3 How to use CBEM POI

To use CBEM POI, simply provide the triangulated surface mesh and boundary conditions in the file

“bndata.dat”, and specify or provide a means to compute the source function h in “src func.f90” for the

Fortran 90 package (or “src func.c” for the C package). Then, invoke the routine cbem poi srf eval in your

code to solve the singular BIE (4) for the unknown potential u and flux t on the boundary. In addition call the

routine cbem poi fld eval to calculate u at user-specified interior points, i.e., to evaluate (14). CBEM POI

package is provided with a sample problem to illustrate the utilization of the code. The driver routine is in

the file “poi ex.f90” for the Fortran 90 package (or “poi ex.c” for the C package). Also “flux ex.dat” and

“potl ex.dat” are the corresponding output files for the boundary flux and potential respectively.

3.1 Getting started with CBEM POI

On a Linux system with a Fortran 90 compiler (a C compiler, gcc, is always available), LAPACK and

BLAS installed, the prospective user of CBEM POI should (i) gunzip and tar the package cbem poi-f-i-x.tgz

(cbem poi-c-i-x.tgz) in a directory of its choice (x is the version number), (ii) edit the file “makefile”, and

(iii) issue “make”. The first step can be accomplished by typing “tar -zxvf cbem poi-f-i-x.tgz” (“tar -zxvf

cbem poi-c-i-x.tgz”) in the shell. In the second step, open “makefile” with a text editor and replace gfortran

by the Fortran 90 compiler on your system (replace gcc by an ANSI C compiler of your choice). The third

step simply generates an executable called poi ex.

Once the executable poi ex has been generated, the user must now provide in the input file “bndata.dat”

(i) the triangulated surface mesh describing the geometry of the domain of interest, and (ii) the boundary

condition for every surface element (triangle). In general, the input file has three sections. In the first section,

the number of boundary nodes followed by the number of boundary elements are prescribed. The second

section contains Cartesian coordinates of all boundary nodes. In the third section, element connectivity and

boundary values (Dirichlet or Neumann) are prescribed for each boundary element.

The input file is best illustrated via an example. To this end, consider a mixed boundary-value problem

for the Poisson equation in the standard cube Ω = {(x, y, z) ∈ R
3 : 0 < x, y, z < 1}. The source function

b(x, y, z) = −(2 y3+6 y) ex+z. The exact solution u(x, y, z) = y3 ex+z is used to specify the Dirichlet boundary

conditions on the bottom face {z = 0, 0 ≤ x, y ≤ 1} and top face {z = 1, 0 ≤ x, y ≤ 1}. Neumann boundary

conditions are prescribed on the remaining faces as t=n ·∇u, where ∇u=(y3 ex+z, 3 y2 ex+z, y3 ex+z). Here

x, y, z represent the Cartesian coordinates of a point in the 3D space.
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Listing 1: Sample input file for a mixed problem in a standard cube

1 24

2 12

3 0.00000000 0.00000000 0.00000000

4 0.00000000 1.00000000 0.00000000

5 0.00000000 0.00000000 1.00000000

6 0.00000000 1.00000000 1.00000000

7 1.00000000 0.00000000 0.00000000

8 1.00000000 1.00000000 0.00000000

9 1.00000000 0.00000000 1.00000000

10 1.00000000 1.00000000 1.00000000

11 0.00000000 0.00000000 0.00000000

12 1.00000000 0.00000000 0.00000000

13 0.00000000 0.00000000 1.00000000

14 1.00000000 0.00000000 1.00000000

15 0.00000000 1.00000000 0.00000000

16 1.00000000 1.00000000 0.00000000

17 0.00000000 1.00000000 1.00000000

18 1.00000000 1.00000000 1.00000000

19 0.00000000 0.00000000 0.00000000

20 1.00000000 0.00000000 0.00000000

21 0.00000000 1.00000000 0.00000000

22 1.00000000 1.00000000 0.00000000

23 0.00000000 0.00000000 1.00000000

24 1.00000000 0.00000000 1.00000000

25 0.00000000 1.00000000 1.00000000

26 1.00000000 1.00000000 1.00000000

27 1 4 2 -0.41351479 1

28 1 3 4 -0.07213830 1

29 8 5 6 1.12404975 1

30 7 5 8 0.19609222 1

31 12 9 10 0.00000000 1

32 11 9 12 0.00000000 1

33 13 16 14 8.15484549 1

34 13 15 16 8.15484549 1

35 17 20 18 0.07213830 0

36 17 19 20 0.41351479 0

37 24 21 22 0.19609222 0

38 23 21 24 1.12404975 0
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For the foregoing problem, the contents of the input file “bndata.dat” can be seen in Listing 1. The line

numbers in the first column of the listing do not, in reality, exist in the file. It is included here to facilitate the

presentation. On the first line, 24 represents the number of boundary nodes. On the second line, 12 specifies

the number of boundary elements. Next, the x, y, z coordinates of all boundary nodes are given on line 3

through line 26. Namely, the x, y, z coordinates of the 1-st boundary node is given on line 3, the Cartesian

coordinates of the 2-nd boundary node on line 4 and so on. In this manner, a global index is assigned to each

boundary node in a sequential order at which they are entered in the input file. Next, the characteristics

of each boundary element is specified from line 27 through line 38 via the format i j k xxx m. The

triplet i → j → k represents the so-called element connectivity, where i, j and k are respectively the global

indices of three boundary nodes that form together a flat triangle in R
3. In other words, boundary node i

is connected to node j which, in turn, is connected to node k defining in this order the orientation of the

boundary element. This orientation may be specified in either clockwise or anti-clockwise when viewed in

the direction of the outward normal. The real number xxx represents the prescribed boundary condition on

element i → j → k (i.e. at the centroid of the flat triangle i → j → k). If m = 0, then the potential u is

given on the element. If m = 1 instead, then the flux t is specified on element i → j → k.

It is also important to note that a global index is assigned to each boundary element in the order at

which they are listed in the input file. Namely, the characteristics of the 1-st boundary element is given

on line 27, the attributes of the 2-nd element on line 28 and so on. Since in C, array elements are indexed

beginning with 0, the listing from line 27 through line 38 for the C package cbem poi-c-i-x.tgz will look like

this:

27 0 3 1 -0.41351479 1

28 0 2 3 -0.07213830 1

29 7 4 5 1.12404975 1

30 6 4 7 0.19609222 1

31 11 8 9 0.00000000 1

32 10 8 11 0.00000000 1

33 12 15 13 8.15484549 1

34 12 14 15 8.15484549 1

35 16 19 17 0.07213830 0

36 16 18 19 0.41351479 0

37 23 20 21 0.19609222 0

38 22 20 23 1.12404975 0

Note that the node numbers i, j and k, indeed, range from 0 through 23.

In CBEM POI, the input data are read into the code via the routine cbem poi input described in the

file “cbem poi input.f90” (“cbem poi input.c”). For the sample problem provided in this package, the file

“bndata.dat” contains 384 boundary nodes and 588 elements on a standard cube.
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4 Structure of CBEM POI

CBEM POI is provided with a driver routine to solve a complete Poisson problem, computational routines

to perform basic BEM tasks, and auxiliary routines to accomplish specific subtasks. Common to all BEM

cbem_poi_assem

cbem_poi_lrhs

cbem_lap_solv

cbem_lap_init

main program

cbem_poi_fld_eval

cbem_poi_srf_eval

cbem_poi_input

Figure 2: Structure of a BEM program.

program, the computational subroutines of CBEM POI are listed below along with a brief description of the

purpose of each routine:

Routine Description

cbem poi srf eval Solve the Singular BIE for the Poisson equation

cbem poi input Read input data and parameters

cbem lap init Initialize arrays and parameters

cbem poi assem Assemble H and G influence matrices, and the contributions of the source term

cbem poi lrhs Form the left- and right-hand sides of the discretized BIE

cbem lap solv Solve the Discretized BIE

cbem poi fld eval Evaluate solution at interior points

The acronym CBEM stands for Collocation Boundary Element Method. Fig. 2 illustrates the structure of

the driver routine (see “poi ex.f90” or “poi ex.c”) provided in this package. As can be seen from the figure,

the main program (i.e. the driver routine) simply invokes cbem poi srf eval to compute the potential u

and flux t at the centroid of each boundary element, and cbem poi fld eval to calculate the potential u

at a set of prescribed interior points. Moreover, the source function is specified in “src func.f90” for the
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Fortran 90 package (or “src func.c” for the C package). Note that cbem lap init and cbem lap solv are

exactly the same routines used in CBEM LAP package to solve the Laplace equation in 3D. The source

code for an individual routine listed in Fig. 2 can be found in a file with corresponding name. For instance,

the routine cbem poi srf eval can be found in “cbem poi srf eval.f90” for the Fortran 90 package (or

“cbem poi srf eval.c” for the C package). In addition, the file “cbem util.f90” (“cbem util.c”) contains useful

routines needed for a successful implementation of a boundary element code. For a detailed description of a

specific CBEM POI routine, interested users (especially software developers) should consult the source code.

Since cbem lap solv employs the iterative solver BiCGSTAB(l)[10] and a general-purpose sparse pre-

conditioner for BEM [8] to solve the discretized linear system (12), it is important to further describe this

routine.

4.1 Description of cbem lap solv

To maintain an O(N2) algorithm, the Bi-Conjugate Gradient Stabilized (BiCGSTAB(l)) method [10] will

be utilized to solve the discretized BIE (12) iteratively. In addition, since linear systems arising from

BEM approximations are often ill-conditioned especially when dealing with mixed boundary-value problems

defined on Lipschitz domains, a preconditioner is necessary to effectively accomplish the foregoing task. As

elucidated in [8], a left preconditioner for the fully-populated linear system (12) is a non-singular matrix P

such that P−1A is better conditioned than the original matrix A. In practice, P is often constructed as

a sparse matrix so that the cost of generating and storing P−1, and solving the system P{x} = {y} scales

linearly with the number of boundary unknowns N .

To extract such a sparse preconditioner P from A, an auxiliary axis-parallel box containing the discretized

boundary Γ of the domain Ω is subdivided into parallelepipeds called cells. Next, boundary elements on Γ

are distributed without repetition into cells. Further, every non-empty cell (i.e. cell containing boundary

elements) is assigned a set of non-empty near-neighboring cells. With these preliminaries, the sparsity pattern

of P is defined by a user-specified parameter Lc =1+nc, where nc is the number of near-neighboring cells (if

any) used in the actual construction of P. Namely, if Lc =1, the entries of P are gathered from those aij of

A obtained only from the cell self-interactions. All other interactions between boundary elements are simply

ignored. This situation will generate a sparse approximation P to the matrix A that contains the dominant

part of A and has the smallest number of non-zero entries. For any other value Lc, the preconditioner P

is constructed from the cell self-interactions plus the interaction of each non-empty cell and its nc nearest

neighbors. Once P has been generated, an incomplete LU factorization with no fill-ins (ILU(0)) [9] is further

employed to indirectly compute an approximate inverse P−1.

In cbem lap solv, if the sparsity flag Lc ≤ 0, the iterative solver BiCGSTAB(l) given by the routine

bicgstabl (see “bicgstabl.f90” or “bicgstabl.c”) runs without preconditioner. If however Lc ≥ 1, the sparsity

pattern of P is determined by calling (i) the routine cbem cell init to build and initialize the axis-parallel

cells, and (ii) the routine cbem cell neighbor to generate the list of near-neighbors for all non-empty cells.

Next, the preconditioner P is formed and an ILU(0) is accomplished by invoking the routine csr ilu0. After

these steps, the iterative solver bicgstabl is called to solve the discretized BIE (12) using the constructed

preconditioner.
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